Типология статистических методов контроля качества. Реферат: Статистические методы контроля качества

26.02.2024

Большую роль в обеспечении качества продукции играют статистические методы.

Целью методов статистического контроля является исключение случайных изменений качества продукции. Такие изменения вызываются конкретными причинами, которые нужно установить и устранить. Статистические методы контроля качества подразделяются на:

статистический приемочный контроль по альтернативному признаку;

выборочный приемочный контроль по варьирующим характеристикам качества;

стандарты статистического приемочного контроля;

система экономических планов;

планы непрерывного выборочного контроля;

методы статистического регулирования технологических процессов.

Следует отметить, что статистический контроль и регулирование качества продукции хорошо известны в нашей стране. В этой области наши ученые имеют несомненный приоритет. Достаточно вспомнить работы А.Н. Колмогорова по несмещенным оценкам качества принятой продукции на основании результатов выборочного контроля, разработку стандарта приемочного контроля с использованием экономических критериев.

Существуют различные методы контроля качества продукции, среди которых особое место занимают статистические методы. Статистические методы контроля качества в настоящее время применяются не только в производстве, но и в планировании, проектировании маркетинге, материально-техническом снабжении и т.д. Последовательность применения семи методов может быть различной в зависимости от цели, которая поставлена перед системой. Точно так же применяемая система контроля качества не обязательно должна включать все семь методов. Их может быть меньше, а может быть и больше, так как существуют и другие статистические методы. Однако можно с полной уверенностью сказать, что семь инструментов контроля качества являются необходимыми и достаточными статистическими методами, применение которых помогает решить 95 % всех проблем, возникающих на производстве.Многие из современных методов математической статистики довольно сложны для восприятия, а тем более для широкого применения всеми участниками процесса управления качеством. Поэтому японские ученые отобрали из всего множества семь методов, которые наиболее применимы в процессах контроля качества. Заслуга японцев состоит в том, что они обеспечили простоту, наглядность, визуализацию этих методов, превратив их в инструменты контроля качества, которые можно понять и эффективно использовать без специальной математической подготовки. В то же время, при всей своей простоте эти методы позволяют сохранить связь со статистикой и дают возможность профессионалам при необходимости совершенствовать их. Итак, к семи основным методам или инструментам контроля качества относятся следующие статистические методы:

· контрольный листок

· гистограмма

· диаграмма разброса

· диаграмма Парето

· стратификация (расслоение)

· диаграмма Исикавы (причинно-следственная диаграмма)

· контрольная карта

Рис. 2.

Перечисленные инструменты контроля качества можно рассматривать и как отдельные методы, и как систему методов, обеспечивающую комплексный контроль показателей качества. Они -- наиболее важная составляющая комплексной системы контроля Всеобщего Управления Качеством. Внедрение семи инструментов контроля качества должно нaчинaться с обучения этим методам всех участников процесса. Например, успешному внедрению инструментов контроля качества в Японии способствовало обучение руководства и сотрудников компаний методикам контроля качества. Говоря о семи простых статистических методах контроля качества, следует подчеркнуть, что основное их назначение -- контроль протекающего процесса и предоставление участнику процесса фактов для корректировки и улучшения процесса. Знание и применение на практике семи инструментов контроля качества лежат в основе одного из важнейших требований TQM -- постоянного самоконтроля. В отраслях промышленности статистические методы применяются для проведения анализа качества продукции и процесса. Анализом качества является анализ, посредством которого с помощью данных и статистических методов определяется отношение между точными и замененными качественными характеристиками. Анализом процесса является анализ, позволяющий уяснить связь между причинными факторами и такими результатами, как качество, стоимость, производительность и т.д. Контроль процесса предусматривает выявление причинных факторов, влияющих на бесперебойное функционирование производственного процесса. Качество, стоимость и производительность являются результатами процесса контроля. Статистические методы контроля качества продукции в настоящее время приобретают все большее признание и распространение в промышленности. Научные методы статистического контроля качества продукции используются в следующих отраслях: в машиностроении, в легкой промышленности, в области коммунальных услуг. Основной задачей статистических методов контроля является обеспечение производства пригодной к употреблению продукции и оказание полезных услуг с наименьшими затратами. Статистические методы контроля качества продукции дают значительные результаты по следующим показателям: · повышение качества закупаемого сырья; · экономия сырья и рабочей силы; · повышение качества производимой продукции; · снижение затрат на проведение контроля; · снижение количества брака; · улучшение взаимосвязи между производством и потребителем; · облегчение перехода производства с одного вида продукции на другой. Главная задача не просто увеличить качество продукции, а увеличить количество такой продукции, которая была бы пригодной к употреблению. Два основных понятия в контроле качества это измерение контролируемых параметров и их распределение. Для того чтобы можно было судить о качестве продукции необязательно измерить такие параметры, как прочность материала, бумаги, масса предмета, качество окраски и т.д. Второе понятие распределение значений контролируемого параметра основано на том, что нет двух совершенно одинаковых по величине параметров у одних и тех же изделий; по мере того, как измерения становятся все более точными, в результатах измерений параметра обнаруживаются небольшие расхождения. Изменчивость "поведения" контролируемого параметра бывает 2 видов. Первый случай когда значения его составляют совокупность случайных величин, образующихся в нормальных условиях; второй когда совокупность его случайных величин образуется в условиях, отличных от нормальных под действием определенных причин. Персонал, осуществляющий управление процессом, в котором формируется контролируемый параметр, должен по его значениям установить: во-первых, в каких условиях они получены (нормальных или отличных от них); и если они получены в условиях, отличных от нормальных, то каковы причины нарушения нормальных условий процесса. Затем принимается управляющее воздействие по устранению этих причин. При применении статистических методов контроля важно установить, какой закономерности подчиняется распределение контролируемых параметров изделий (кривой нормального распределения Гаусса, распределению, характерному кривой распределения Максвелла и т.д.). Изменение величины конкретного контролируемого параметра изделия или технологического режима проявляется в изменении функции распределения. Сравнение фактической функции распределения с нормальной позволяет контролировать технологический процесс или качество изделия. Общая схема статистического контроля качества состоит из следующих этапов:1) отбираются небольшие выборки изделий периодически или по специальному алгоритму;2) изделия выборки проверяются, чтобы для каждого изделия определить значение конкретного признака X;3) выбранные значения X (X 1 , X 2 , ..., X n) заносятся в контрольную карту, в которой указываются допустимые конкретные границы изменения признака X;4) по распределению точек X на контрольной карте относительно нейтральных границ принимается решение о годности изделий или браке при приемочном статистическом контроле или о необходимости вмешательства в технологический процесс при статистическом контроле технологического процесса. Карта статистического контроля качества приведена на рис. 3.


Рис. 3.

На горизонтальной оси указываются номера выборок (за смену, сутки, неделю, месяц); на вертикальной оси откладываются размер выбранной характеристики X, контролируемого параметра, нижняя и верхняя границы допуска (НГД, ВГД); нижняя и верхняя предупредительные границы (НПКГ, ВПКГ).

Контрольная работа №2

Вторая контрольная работа ставит целью практическое решение задач, связанных различными вопросами управления качеством.

Задача №1

Изготавливаемое изделие подвергается выборочному контролю качества. Вычислить в выборке число 1<А<9 (7) дефектных изделий, если вероятность появления годного изделия равна В= 0,93, а выборка равна N=21. Построить графики плотности вероятности и кумулятивной вероятности. Дано:

В = 0,93 - вероятность появления годного изделия.

N = 21 - число выборки.

1. А = ? - количество дефектных изделий, если

Построить:

1. График плотности вероятности.

2. График кумулятивной вероятности.

Для решения этой задачи я применю формулу Бернулли:

1. Согласно нашим данным рассчитываем вероятность:

N = 21 - число выборки;

В = p = 0,93 - вероятность появления годного изделия;

q = 1 - 0,93 = 0,07 - вероятность появления брака.

1,47*0,234=0,344;

210 * 0,0049 * 0,252 = 0,2593;

1330 * 0,000343 * 0,2708 = 0,1235;

5985 * 0,00002401 * 0,2912 = 0,04185

20349 * 0,00000011764 * 0,3131 = 0,00075;

2. Рассчитываем кумулятивную вероятность, т.е. накопление вероятности по формуле:

А - число дефектных изделий, для которых выполняется расчет, тогда зная значения, можем найти

3. Занесем все полученные данные в таблицу:

4. Построим график плотности вероятности и график кумулятивной вероятности:



Задача №2

При метрологической аттестации вольтметра с заявленным классом точности А=1, выполнено 10 измерений образцового значения U=1,5, при конечном пределе измерения N=2. Определить соответствие заявленному при производстве классу точности, пользуясь наибольшими значениями относительной и приведенной погрешности. Оценить качество многократных измерений, обработав результат измерения. Изменения считать прямыми, равноточными, свободными от поправки.

Дано: А = 1 - заявленный класс точности.

N = 2 - конечный предел измерения.

Определить:

1. Соответствие заявленному при производстве классу точности, пользуясь наибольшими значениями относительной и приведенной погрешностей.

2. Оценить качество многократных измерений, обработав результат измерения.

1. Определим относительную погрешность и выберем max значение:

2. Определим приведенную погрешность и определим max

значение:

max 5,7 = 0,015.

3. max 5,7 = 0,02 и max 5,7 = 0,015 < A (A = 1)

4. Определим среднеквадратичное единичное отклонение.

Среднее значение х.

5. Определим многократное отклонение:

Статистический контроль качества

Под статистическим контролем качества понимается такой контроль, при котором проверяются не все изделия изготовленной партии, а только выборка из нее. При этом по результатам контроля судят о качестве всей партии.

Различают два вида статистического контроля: контроль по качественному признаку, наиболее распространенным частным случаем, которого является контроль по альтернативному признаку, и контроль по количественному признаку.

При контроле по альтернативному признаку все изделия в партии делятся на две группы: годные и дефектные. Оценка партии производится по величине доли дефектных изделий в выборке.

Основной характеристикой качества партии при контроле по альтернативному признаку является доля дефектных изделий в партии:

где М -- число дефектных изделий в партии;

N - объем партии.

При проверке выборки объема N выявляется М дефектных изделий. По величине q принимают решение о приемке или забраковании партии.

Основные термины статистического контроля

Единица продукции -- отдельный экземпляр штучной продукции или определенное в установленном порядке количество нештучной или штучной продукции.

Примечание. Продукция может быть завершенной или незавершенной, находящейся в процессе изготовления, добывания или ремонта.

Изделие - единица промышленной продукции, количество которой может исчисляться в штуках или экземплярах.

Контролируемая партия продукции - партия, предназначенная для контроля совокупности единиц продукции одного наименования, типономинала или типоразмера и исполнения, произведенная в течение определенного интервала времени в одних и тех же условиях.

Примечание. Произведенная продукция может находиться в процессе изготовления, добывания или ремонта.

Объем партии - число единиц продукции, составляющих партию.

Поток продукции -- продукция одного наименования, типономинала или типоразмера и исполнения, находящаяся в движении на технологической линии.

Выборка - изделие или определенная совокупность изделий, отобранных для контроля из партии или потока продукции.

Примечание. В зависимости от степени завершенности продукции к изделиям допускается относить завершенные и незавершенные предметы производства, в том числе заготовки.

Объем выборки - число изделий, составляющих выборку.

Мгновенная выборка - выборка из потока продукции, которую составляют изделия, произведенные последними к моменту отбора в течение достаточно короткого интервала времени.

Объединенная выборка - выборка, состоящая из серии мгновенных выборок.

Случайная выборка - выборка, при составлении которой для любого изделия контролируемой совокупности обеспечивают одинаковую вероятность его отбора.

Преднамеренная выборка - выборка, в которую изделия отбирают с определенной тенденцией для изменения вероятности отбора дефектных единиц продукции.

Систематическая выборка -- выборка, попадание изделий в которую обуславливают его номером или положением в заранее упорядоченной контролируемой совокупности.

Представительная выборка (НДП репрезентативная выборка) - выборка, при составлении которой из каждой части контролируемой совокупности отбирают такое число изделий, чтобы в достаточной степени отразить свойства данной совокупности в целом.

Проба -- определенное количество нештучной продукции, отобранное для контроля.

Объем пробы - число единиц нештучной продукции, составляющей пробу.

Точечная проба (НДП - разовая проба) -- проба, взятая одновременно из определенной части нештучной продукции.

Объединенная проба (НДП - общая проба) - проба, состоящая из серии точечных проб.

Период отбора - интервал времени между моментами отбора смежных выборок или проб из потока продукции.

Выборочный контроль - контроль, при котором решение о качестве контролируемой продукции принимается по результатам проверки одной или нескольких выборок или проб из партии или потока продукции.

Статистический приемочный контроль качества продукции (статистический приемочный контроль) - выборочный контроль качества продукции, основанный на применении методов математической статистики для проверки соответствия качества продукции установленным требованиям.

Доля дефектных единиц продукции -- отношение числа дефектных единиц продукции к общему числу единиц продукции в партии.

Уровень дефектности - доля дефектных единиц продукция или число дефектных на сто единиц продукции.

Приемочное число - контрольный норматив, являющийся критерием для приемки партии продукции и равный максимальному числу дефектных единиц (дефектов) в выборке или пробе в случае статистического приемочного контроля.

Браковочное число - контрольный норматив, являющийся критерием для забракования партии продукции и равный минимальному числу дефектных единиц (дефект) в выборке или пробе в случае статистического приемочного контроля.

Решающее правило - указание, предназначенное для принятия решения относительно приемки партии продукции по результатам ее контроля.

Примечание. Для принятия решения может быть предусмотрена определенная совокупность решающих правил.

План контроля - совокупность данных о виде контроля, объемах контролируемой партии продукции, выборок или проб, о контрольных нормативах и решающих правилах.

Схема статистического приемочного контроля (схема приемочного контроля) - полный комплект планов статистического приемочного контроля в сочетании с совокупностью правил применения этих планов,

Оперативная характеристика плана статистического приемочного контроля (оперативная характеристика) - выраженная уравнением, графиком или таблицей и обусловленная определенным планом контроля зависимость вероятности приемки от величины, характеризующей качество этой продукции.

Риск поставщика - вероятность забракования партии продукции, обладающей приемочным уровнем дефектности.

Риск потребителя - вероятность приемки партии продукции, обладающей браковочным уровнем дефектности.

Одноступенчатый контроль (НДП - одновыборочный контроль; контроль однократной выборкой; однократный контроль) - статистический приемочный контроль, характеризующийся тем, что решение относительно приемки партии продукции принимают по результатам контроля только одной выборки или пробы.

Ослабленный контроль (НДП сокращенный контроль) - статистический приемочный контроль, применяемый в том случае, когда результат контроля заданного числа предыдущих партий продукции дает достаточное основание для заключения о том, что действительный уровень дефектности ниже приемочного, и характеризующийся меньшим объемом выборки, чем при нормальном контроле.

Усиленный контроль -- статистический приемочный контроль, применяемый в том случае, когда результаты контроля заданного числа предыдущих партий продукции дают достаточное основание для заключения о том, что действительный уровень дефектности выше приемочного, и характеризующийся более строгими контрольными нормативами, чем при нормальном контроле.

Отбор образцов для испытаний осуществляется различными методами. При первом способе представления продукции на контроль единицы продукции, подлежащей контролю, упорядочены и пронумерованы сплошной нумерацией, они поступают на контроль в виде некоторой ограниченной совокупности, сформированной независимо от процесса производства. Из этой совокупности выборка отбирается с применением генератора равномерно распределенных случайных чисел или таблицы равномерно распределенных случайных чисел. Гене- ратором случайных чисел может служить вращающийся круг с нанесенными цифрами на точках деления. Количество точек деления определяется необходимым количеством случайных чисел, т. е. количеством единиц продукции в контролируемой партии. Другой вариант генератора - лототрон с количеством перенумерованных шаров, число которых равно числу единиц контролируемой партии.

Имеются вычислительные процедуры получения равномерно распределенных случайных чисел, в том числе основанные на применении таблиц равномерно распределенных случайных чисел.

Таблица равномерно распределенных случайных чисел это зафиксированный в виде таблицы результат статистического эксперимента, осуществленного с помощью датчика (генератора) равномерно распределенных случайных чисел.

Предположим, что имеется таблица случайных чисел, равномерно распределенных в интервале от 0 до 10 000.

Чтобы получить случайные числа Х 4 , равномерно распределенные в интервале от 0 до 1, нужно все эти числа разделить на 10 000.

Случайные числа, равномерно распределенные на интервале (0, Ь), определяются по формуле

В качестве номеров изделий, входящих в выборку, нужно взять целую часть полученных случайных чисел [гг]. При каждом новом отборе выборок нужно произвольно выбрать первое из этих чисел, а затем следующие после него п - 1 число, п объем выборки. Если некоторые числа повторились, то нужно увеличить количество выбранных случайных чисел на число повторений.

Процедура случайного отбора изделий в выборку с применением таблиц равномерно распределенных случайных чисел заключается в переномеровании всех изделий партии, подлежащей контролю, составлению сравнительно короткого ряда случайных чисел в диапазоне от 1 до N, где N объем партии, и выборе п первых различных чисел из этого ряда. Эти числа определяют изделия, входящие в выборку объема N.

Примеры продукции, поступающей на контроль способом “ряд”: двигатели, холодильники, стиральные машины.

Второй способ представления продукции на контроль “россыпь”.

В этом случае при отборе единиц в выборку применяется “метод наибольшей объективности”. При применении этого метода в выборку включаются единицы продукции из разных частей контролируемой партии.

Третий способ представления продукции на контроль называется “поток”. В этом случае единицы продукции поступают на контроль непрерывным потоком одновременно с выпуском продукции. Единицы продукции упорядочены, можно найти единицу любого заданного номера. Такой способ характерен для случая, когда контролируется продукция непосредственно после того, как она сходит с конвейера.

В этом случае применяется метод систематического отбора единиц продукции в выборку. Следующая задача после отбора образцов для испытаний - выбор плана контроля, т. е. установление объема контролируемой партии, объема выборки, приемочного числа, решающего правила. Эта задача решается рассмотренными методами с учетом установленных величин ошибок первого и второго рода, а также экономических факторов.

Основные стандартизированные понятия, применяемые при контроле качества, в том числе при сертификации.

Допускаемое отклонение - отклонение значения показателя качества продукции или ее параметра от номинального значения, находящееся в пределах, установленных нормативной документацией.

Дефект -- каждое отдельное несоответствие продукции требованиям, установленным нормативной документацией.

Явный дефект - дефект, для выявления которого в нормативной документации предусмотрены соответствующие правила, методы и средства контроля.

Скрытый дефект - дефект, для выявления которого в нормативной документации не предусмотрены необходимые правила, методы и средства контроля.

Критический дефект - дефект, при наличии которого использование продукции по назначению практически невозможно или исключается в соответствии с требованиями безопасности.

Значительный дефект - дефект, который существенно влияют на использование продукции по назначению или на ее долговечность, но не является критическим.

Малозначительный дефект - дефект, который не оказывает существенного влияния на использование продукции по назначению и на ее долговечность.

Деление дефектов на критические, значительные и малозначительные используется при анализе уровня качества продукции и технологии ее изготовления.

Исправимый дефект - дефект, устранение которого технически возможно и экономически целесообразно.

Неисправимый дефект - дефект, устранение которого технически невозможно или экономически нецелесообразно.

Дефектная единица продукции - единица продукции, имеющая хотя бы один дефект.

Дефектное изделие - изделие, имеющее хотя бы один дефект.

Брак - дефектная единица продукции или совокупность таких единиц.

Исправимый брак - брак, в котором все дефекты являются исправимыми.

Неисправимый брак - брак, состоящий из таких единиц продукции, в каждой из которых имеется хотя бы один неисправимый дефект.

Сорт продукции - градация продукции определенного вида по одному или нескольким показателям качества, установленная нормативной документацией.

Планы статистического контроля. Изготовитель продукции обязан обеспечивать соответствие показателей качества тем значениям, которые установлены в ТУ. В дальнейшем, при контроле качества, те изделия, параметр которых ниже (или выше, или выходит за верхний или нижний пределы) установленного значения, признаются дефектными.

Как уже отмечалось, под параметром обычно понимается показатель назначения. Применение этого термина традиционно для изделий многих отраслей промышленности электро- и радиоэлементы, двигатели, механические детали. Помимо выхода параметра за установленные пределы, причиной дефектности изделия могут быть конструктивные и производственные дефекты, например, вмятины на корпусе, незакрывающиеся двери автомобиля, неработающие индикаторы и т. п.

Статистический контроль качества (понятие из японского стандарта) – это применение статистических принципов, методов и приемов на всех стадиях производства, направленное на экономичное изготовление продукции, максимально полезной и имеющей сбыт. Так как на основе информации о контроле качества в реальном масштабе времени принимаются решения по корректированию и регулированию производственных процессов, то в России получило развитие такое понятие как статистическое управление качеством

Статистическое управление качеством – совокупность методов обнаружения неслучайных факторов, позволяющих диагностировать состояние процесса, провести его корректировку и, в конечном счете, способствующих улучшению качества продукции.

Применению статистических методов управления качеством и контроля качества посвящены международный стандарт ISO 10017– 1994 и множество отечественных стандартов, например, вводный ГОСТ 15895–77. Статистические методы управления качеством продукции. Термины и определения (100 терм. и опр.)

Статистические методы полезны для использования при проектировании продукции, услуг и процессов, при контроле производственных процессов, при анализе проблем, определении степени риска, определении коренных причин появления несоответствий, установлении предельных характеристик продукции и процессов, при прогнозировании, проверках, при измерении или оценке показателей качества.

В зависимости от уровня развития управления качеством выделяются три группы или категории методов или инструментов: семь элементарных инструментов статистического контроля (1962 г.), семь новых инструментов управления качеством (1977 г.), методы Тагути (1969 –1988 гг.).

4.4.2. Элементарные методы или инструменты контроля качества

График – инструмент, позволяющий отслеживать изменения значений показателей качества, полученных в результате измерения и испытаний, в виде линейного графика (наблюдения временного ряда, точечного графика, когда наблюдается изменение измеряемого параметра или число дефектов и дефектной продукции в партии), круговой, столбчатой и «радиационной» диаграмм.

Радиационная диаграмма представляет комбинацию кругового и линейного графиков и строится следующим образом. Из центра круга к окружности проводятся по числу факторов прямые линии (радиусы), На эти радиусы наносятся деления градуировки и откладываются значения данных. Полученные при этом точки соединяют отрезками прямой линии. График отличается высокой наглядностью и широко используется для анализа управления предприятием.

Контрольная карта (Control chart ) – инструмент, позволяющий отслеживать ход протекания процесса посредством измерения показателей качества и воздействовать на него (с помощью соответствующей обратной связи), предупреждая отклонения от предъявляемых к продукции и процессу требований. Контрольная карта является одним из основных инструментов в обширном арсенале статистических методов контроля качества.

Графическое её представление – это усложненный линейный график путем введения центральной линии, и линий, определяющих нижнюю (Lower Control Level) и верхнюю (Upper Control Level) контрольные границы (границы, соответственно минимальное и максимальное допустимое значение параметра процесса или продукции). Иначе, можно сказать, что границами устанавливается допустимый диапазон разброса показателей качества в обычных условиях хода производственных процессов. Выход показателей качества за пределы контрольных границ означает нарушение стабильности процесса и требует проведения анализа причин, и принятия соответствующих мер. Координаты контрольной карты: по оси ординат – значение показателя качества, по оси абсцисс – номер выборки.

Основными признаками классификации контрольных карт являются,

    характер измеряемой случайной величины; здесь выделяют контрольные карты для непрерывной, случайной величины и контрольные карты для целочисленной, дискретной случайной величины, т.е. определяется «есть дефект или нет дефекта» и называют их контрольные карты, построенные по альтернативному признаку;

    вероятность появления неблагоприятных событий (например, выход дефектной продукции больше 5% или меньше 5%).

В рамках семи простых методов наибольшее распространение получили девять типов контрольных карт: Х– карта, R– карта, (X-R)– карта, S – карта, С – карта, U– карта, Np – карта, Р–карта и регрессионная карта.

Рассмотрим ряд примеров.

Х– карта . На эту контрольную карту наносятся значения средних величин i-ой выборки. Ордината центральной линии () определяется как средняя средних значений ()i-ых выборок и используются в качестве стандарта. Для определения нижней (НПГ) и верхней (ВПГ) контрольных границ изменения средней выборок i принимается гипотеза о нормальном законе распределения измеряемой случайной величины. Тогда будем иметь

, (6.1)


, (6.2)

где – среднеквадратичное отклонение средней величины выборки

R– карта строится для контроля за степенью размаха выборок относительно допустимого, приемлемого размаха. Центральная линия R–карты будет соответствовать приемлемому размаху параметра в выборке. Таким образом, эта карта представляет собой карту изменчивости процесса.

С – карта . В таких картах строится график числа дефектов в партии, в день, на один станок, в расчет на 100 единиц оборудования и т.д, т.е. выборки равны (n = n i). В основе использования С - карты лежит распределение Пуассона и постоянство объема проверяемых изделий. При использовании карты этого типа делается предположение, что дефекты контролируемой характеристик продукции встречаются сравнительно редко. На карту наносится число дефектов по каждой выборке С i . Контрольные пределы для данного типа карт рассчитываются на основе свойств распределения Пуассона. В этом случае среднеквадратичное отклонение случайной величины будет равно
. (4.4)

Тогда, верхняя контрольная граница будет равна

, (4.5)

нижняя предельная граница

, (4.6)

где – среднее арифметическое количество дефектов по контролируемым выборкам изделий; – коэффициент жесткости допустимого разброса количества дефектов по выборкам.

U– карта. В карте данного типа строится график относительной частоты дефектов, т.е. отношения числа обнаруженных дефектов m i к n i числу проверенных единиц продукции выборки iN. В отличие от С – карты для построения карты данного типа не требуется постоянство числа единиц проверяемых изделий, поэтому ее можно использовать при анализе партий различного объема. Ординаты нижней и верхней предельных границ Ui определяются с использованием формул (6.3) и (6.4). В качестве средней величины применяется

, где
,i = 1,2,… ,N. (4.7)

Гистограмма инструмент представления данных, сгруппированных по частоте попадания в определенный, заранее заданный интервал и предназначенный для выявления характера разброса значений контролируемого параметра. Гистограмма представляет собой столбчатый график, на котором по оси У дается частота (частость) попадания, по оси Х интервалы изменения параметра. Она применяется для наглядного отображения распределения частоты значений показателей качества, дефектов, потерь, отказов и др. за определенный период времени. Гистограмма используется для иллюстрации изменчивости; визуального сообщения о ходе процесса; для определения закона распределения случайной величины.

Будем считать, что процесс является контролируемым, если систематические составляющие его погрешности регулярно выявляются и устраняются, а остаются только случайные составляющие погрешностей, которые, как правило, распределяются в соответствии с нормальным (закон Гаусса) законом распределения.

Метод расслоения (стратификация ) – инструмент, позволяющий произвести селекцию, расслоение данных в соответствии с различными факторами. Сущность метода заключается в том, что данные группируют в зависимости от условий их получения и производят обработку каждой группы отдельно. При исследовании производственных проблем расслоение осуществляется по следующим факторам, так называемым 5 М:

    исполнителям – по квалификации, полу, стажу работы и т.д.;

    оборудованию и машинам– по новому и старому оборудованию, марке, конструкции и сроку службы;

    исходному материалу – по качеству сырья, партии, месту производству, сроку выпуска и т.д.;

    способу производству – технологическому процессу, месту производства, условиям производства;

    измерению – по методу измерения, типу измерительных средств или их точности и т.д..

Факторы разделяются как факторы первой, второй и третьей категории.

Метод расслоения применяется и при построении причинно-следственных диаграмм, диаграмм Парето, гистограммы и контрольных карт. В чистом виде он применяется и при расчете стоимости изделия, когда требуется оценка прямых и косвенных расходов по изделиям и по партиям, при оценке качества хранения отдельно по изделиям, по партиям и т.д.

Диаграмма Парето (Pareto diagram) – инструмент, позволяющий выявить наиболее значимые факторы или условия в обеспечении качества продукции. Диаграмма Парето, названная именем ееавтора, итальянского ученого–экономиста Парето (1845– 1923), представляет собой столбчатый график, построенный по определенному правилу. На диаграмме дается наглядное отображение распределения дефектов (потерь) путем последовательного выстраивания количества дефектов (или потерь), полученных в связи с воздействием определенных факторов или в единицу времени. При этом, график начинает строиться от наибольшего количества дефектов к наименьшему количеству дефектов, т.е. по порядку их количественной значимости. Распределение дефектов дается как в натуральном измерении, так и относительном в процентах. Элементом диаграммы Парето является кумулятивная кривая, показывающая относительный суммарный вес по нарастанию дефектов.

Причинно-следственная диаграмма (диаграмма Ишикавы) – инструмент, позволяющий выявить отношение между показателями качества и воздействующими на него факторами путем упорядочения и демонстрации связи между отдельными факторами (причинами) и конечным результатом. Потенциальные причины классифицируются по категориям и подкатегория, так что их представление напоминает рыбий скелет (рис. 4.3.).

Рис. 4 3 . Причинно-следственная диаграмма связей факторов

При построении диаграммы причинно-следственной связи следует соблюдать некоторые правила: а) указанные в основании стрелки факторы являются причиной или приводят к результату, находящемуся на острие стрелки; б) изображаемую причинно-следственную связь следует всегда проверять таким тестом: « действительно ли А приводит (или является причиной) к В». Если удается по всем связям ответить «да», то схема составлена правильно.

Автор причинно–следственной диаграммы – японский ученый в области качества, профессор Токийского Университета Каору Исикава. Особенности построения диаграммы состоят в следующем: проблема –центральная горизонтальная линия, главные факторы (категории) – наклонные линии, горизонтальные линии к наклонным – основные факторы (подкатегории), определяющие состояние каждого основного фактора; наклонные линии к горизонтальным, основным факторам – частные факторы. Количество главных факторов, как правило, ограничено числом 4 – 6. Например, Исикава исследуют в основном пять фактора – 5М: люди (men) и условия их труда, оборудование (machine), предметы труда (material), методы (metod) – технологии и организация работ, измерение (measuring). Схема выстраивается в виде «рыбьего скелета», где «хребет» - следствие, «большие кости» – основные причины, которые являются следствием действия менее значимых факторов–причин.

Диаграмма разброса (рассеивания )– инструмент, позволяющий определить вид и тесноту связей между параметрами соответствующих переменных. Диаграмма рассеивания дает возможность выдвинуть гипотезу о характере связи между двумя случайными величинами. При наличии корреляционной зависимости между двумя переменными удается значительно облегчить контроль процесса с технологической, временной и экономической точки зрения.

Сбор информации для построения диаграммы ведется следующим образом. Выделяется объект анализа (У) и фактор (Х), влияющий на него. Составляется выборка парных данных (X,Y). Желательно иметь не менее 30 пар. Оценка зависимости между исследуемыми параметрами Х и У проводится по характеру скопления точек, каждая из которых определяет количественную связь между Х и У. Различают четыре наиболее характерных форм скопления точек: прямая корреляция (прямая зависимость), отрицательная корреляция (обратная зависимость), криволинейная корреляция (нелинейная функция), корреляция отсутствует. Пример форм зависимости между Х и У дается на рис. 4.4.

Рис. 4.4. Корреляционные поля: а) положительная корреляция; б) отрицательная корреляция; в) корреляция отсутствует.

Литература

4.1. Федюкин В.К., Дурнев В.Д., Лебедев В.Г. Методы оценки и управления качеством промышленной продукции: Учебник. – М.: Филинъ–Рилант, 2000.

4.2. Фомин В.Н. Квалиметрия. Управление качеством. Сертификация: Курс лекций.– М.: ТАНДЕМ, 2000.

4.3. Фейгенбаум А. Контроль качества продукции /Пер. с англ. – М.: Экономика, 1986.

4.4. ГОСТ 16504–81.Испытания и контроль качества продукции. Основные термины и определения. – М.: Изд-во стандартов, 1991.

Смысл статистических методов контроля качества заключается в значительном снижении затрат на его проведение по сравнению со сплошным контролем, с одной стороны, и в исключении случайных изменений качества продукции - с другой.
Различаются две области применения статистических методов в производстве (рис. 4.8):
- при регулировании хода технологического процесса с целью удержания
- его в заданных рамках (левая часть схемы);
- при приемке изготовленной продукции (правая часть схемы).

Для контроля технологических процессов решаются задачи статистического анализа точности и стабильности технологических процессов и их статистического регулирования. При этом за эталон принимаются допуски на контролируемые параметры, заданные в технологической документации, и задача заключается в жёстком удержании этих параметров в установленных пределах. Может быть поставлена также задача поиска новых режимов выполнения операций с целью повышения качества конечного производства.
Прежде чем браться за применение статистических методов в производственном процессе, необходимо четко представлять цель применения этих методов и выгоду производства от их применения. Очень редко данные используются для заключения о качестве в том виде, в каком они были получены. Обычно для анализа данных используются семь, так называемых, статистических методов или инструментов контроля качества: расслаивание (стратификация) данных; графики; диаграмма Парето; причинно-следственная диаграмма (диаграмма Исикавы или «рыбий скелет); контрольный листок и гистограмма; диаграмма разброса; контрольные карты.
1. Расслаивание (стратефикация).
При разделении данных на группы в соответствии с их особенностями группы именуют слоями (стратами}, а сам процесс разделения - расслаиванием (стратификацией). Желательно, чтобы различия внутри слоя были как можно меньше, а между слоями - как можно больше.
В результатах измерений всегда есть больший или меньший разброс параметров. Если осуществлять стратификацию по факторам, порождающим этот разброс, легко выявить главную причину его появления, уменьшить его и добиться повышения качества продукции.
Применение различных способов расслаивания зависит от конкретных задач. В производстве часто используется способ, называемый 4М, учитывающий факторы, зависящие от: человека (man); машины (machine); материала (material); метода (method).
То есть расслаивание можно осуществить так:
- по исполнителям (по полу, стажу работы, квалификации и т.д.);
- по машинам и оборудованию (по новому или старому, марке, типу и т.д.);
- по материалу (по месту производства, партии, виду, качеству сырья и т.д.);
- по способу производства (по температуре, технологическому приему и т.д.).
В торговле может быть расслаивание по районам, фирмам, продавцам, видам товара, сезонам.
Метод расслаивания в чистом виде применяется при расчете стоимости изделия, когда требуется оценка прямых и косвенных расходов отдельно по изделиям и партиям, при оценке прибыли от продажи изделий отдельно по клиентам и по изделиям и т. д. Расслаивание также используется в случае применения других статистических методов: при построении причинно- следственных диаграмм, диаграмм Парето, гистограмм и контрольных карт.
2. Графическое представление данных широко применяется в производственной практике для наглядности и облегчения понимания смысла данных. Различают следующие виды графиков:
А). График, представляющий собой ломанную линию (рис. 4.9), применяется, например, для выражения изменения каких-либо данных с течением времени.

Б) Круговой и ленточный графики (рис. 4.10 и 4.11) применяются для выражения процентного соотношения рассматриваемых данных.

Соотношение составляющих себестоимости производства:
1 - себестоимость производства продукции в целом;
2 - косвенные расходы;
3 - прямые расходы и т.д.

На рисунке 4.11 показано соотношение сумм выручки от продажи по отдельным видам изделий (A,B,C), видна тенденция: изделие B перспективно, а A и C - нет.
В). Z-образный график (рис. 4.12) применяется для выражения условий достижений данных значений. Например, для оценки общей тенденции при регистрации по месяцам фактических данных (объём сбыта, объём производства и т.д.)
График строится следующим образом:
1) откладываются значения параметра (например, объём сбыта) по месяцам (за период одного года) с января по декабрь и соединяются отрезками прямой (ломаная линия 1 на рис. 4.12);
2) вычисляется кумулятивная сумма за каждый месяц и строится соответствующий график (ломаная линия 2 на рис. 4.12);
3) вычисляются итоговые значения (меняющийся итог) и строится соответствующий график. За меняющийся итог в данном случае принимается итог за год, предшествующий данному месяцу (ломаная линия 3 на рис. 4.12).

По меняющемуся итогу можно определить тенденцию изменения за длительный период. Вместо меняющегося итога можно наносить на график планируемые значения и проверять условия их достижения.
Г). Столбчатый график (рис. 4.13) представляет количественную зависимость, выражаемую высотой столбика, таких факторов, как себестоимость изделия от его вида, сумма потерь в результате брака от процесса и т.д. Разновидности столбчатого графика - гистограмма и диаграмма Парето. При построении графика по оси ординат откладывают количество факторов, влияющих на изучаемый процесс (в данном случае изучение стимулов к покупке изделий). По оси абсцисс - факторы, каждому из которых соответствует высота столбика, зависящая от числа (частоты) проявления данного фактора.

Рис. 4.13. Пример столбчатого графика: 1 - число стимулов к покупке; 2 - стимулы к покупке; 3 - качество; 4 - снижение цены; 5 - гарантийные сроки; 6 - дизайн; 7 -доставка; 8 - прочие

Если упорядочить стимулы к покупке по частоте их проявления и построить кумулятивную сумму, то получим диаграмму Парето.
3. Диаграмма Парето.
Схема, построенная на основе группирования по дискретным признакам, ранжированная в порядке убывания (например, по частоте появления) и показывающая кумулятивную (накопленную) частоту, называется диаграммой Парето (рис. 4.10). Парето - итальянский экономист и социолог, использовавший свою диаграмму для анализа богатств Италии.

Рис. 4.14. Пример диаграммы Парето: 1 - ошибки в процессе производства; 2 - некачественное сырье; 3 - некачественные орудия труда; 4 - некачественные шаблоны; 5 - некачественные чертежи; 6 - прочее; А - относительная кумулятивная (накопленная) частота, %; n - число бракованных единиц продукции.

Приведенная диаграмма построена на основе группирования бракованной продукции по видам брака и расположения в порядке убывания числа единиц бракованной продукции каждого вида. Диаграмму Парето можно использовать очень широко. С ее помощью можно оценить эффективность принятых мер по улучшению качества продукции, построив ее до и после внесения изменений.
4. Причинно-следственная диаграмма (рис. 4.15).

Причинно-следственная диаграмма используется, когда требуется исследовать и изобразить возможные причины определенной проблемы. Ее применение позволяет выявить и сгруппировать условия и факторы, влияющие на данную проблему.
Рассмотрим форму причинно-следственной диаграммы на рис. 4.15 (она называется еще «рыбий скелет» или диаграмма Исикавы).
Порядок составления диаграммы:
1. Выбирается проблема для решения - «хребет».
2. Выявляются наиболее существенные факторы и условия, влияющие на проблему - причины первого порядка.
3. Выявляется совокупность причин, влияющих на существенные факторы и условия (причины 2-, 3- и последующих порядков).
4. Анализируется диаграмма: факторы и условия расставляются по значимости, устанавливаются те причины, которые в данный момент поддаются корректировке.
5. Составляется план дальнейших действий.
5. Контрольный листок (таблица накопленных частот) составляется для построения гистограммы распределения, включает в себя следующие графы: (табл. 4.4).

На основании контрольного листка строится гистограмма (рис. 4.16), или, при большом количестве измерений, кривая распределения плотности вероятностей (рис. 4.17).

Гистограмма представляет собой столбчатый график и применяется для наглядного изображения распределения конкретных значений параметра по частоте появления за определенный период времени. При нанесении на график допустимых значений параметра можно определить, как часто этот параметр попадает в допустимый диапазон или выходит за его предел.
При исследовании гистограммы можно выяснить, в удовлетворительном ли состоянии находятся партия изделий и технологический процесс. Рассматривают следующие вопросы: какова ширина распределения по отношению к ширине допуска; каков центр распределения по отношению к центру поля допуска; какова форма распределения.
В случае, если
а) форма распределения симметрична, то имеется запас по полю допуска, центр распределения и центр поля допуска совпадают - качество партии в удовлетворительном состоянии;
б) центр распределения смещен вправо, то есть опасение, что среди изделий (в остальной части партии) могут находиться дефектные изделия, выходящие за верхний предел допуска. Проверяют, нет ли систематической ошибки в измерительных приборах. Если нет, то продолжают выпускать продукцию, отрегулировав операцию и сместив размеры так, чтобы центр распределения и центр поля допуска совпадали;
в) центр распределения расположен правильно, однако ширина распределения совпадает с шириной поля допуска. Есть опасения, что прирассмотрении всей партии появятся дефектные изделия. Необходимо исследовать точность оборудования, условия обработки и т.д. либо расширить поле допуска;
г) центр распределения смещен, что свидетельствует о присутствии дефектных изделий. Необходимо путем регулировки переместить центр распределения в центр поля допуска и либо сузить ширину распределения, либо пересмотреть допуск;
д) ситуация аналогична предыдущей, аналогичны и меры воздействия;
е) в распределении 2 пика, хотя образцы взяты из одной партии. Объясняется это либо тем, что сырьё было 2-х разных сортов, либо в процессе работы была изменена настройка станка, либо в 1 партию соединили изделия, обработанные на 2-х разных станках. В этом случае следует производить обследование послойно;
ж) и ширина, и центр распределения - в норме, однако незначительная часть изделий выходит за верхний предел допуска и, отделяясь, образует обособленный островок. Возможно, эти изделия - часть дефектных, которые вследствие небрежности были перемешаны с доброкачественными в общем потоке технологического процесса. Необходимо выяснить причину и устранить её.
6. Диаграмма разброса (рассеяния) применяется для выявления зависимости (корреляции) одних показателей от других или для определения степени корреляции между n парами данных для переменных x и у:

(Х1, Y1), (Х2, Y2), ..., (Xn, Yn).

Эти данные наносятся на график (диаграмму разброса), и для них вычисляется коэффициент корреляции по формуле

где δxy - ковариация;
δx,δy - стандартные отклонения случайных переменных x и y;
n - размер выборки (количество пар данных xi и уi);
x и y - среднеарифметические значения xi и уi соответственно.
Рассмотрим различные варианты диаграмм разброса (или полей корреляции) на рис. 4.18:

В случае:
а) можно говорить о положительной корреляции (с ростом x увеличивается у);
б) проявляется отрицательная корреляция (с ростом x уменьшается у);
в) при росте x у может как расти, так и уменьшаться, говорят об отсутствии корреляции. Но это не означает, что между ними нет зависимости, между ними нет линейной зависимости. Очевидная нелинейная (экспоненциальная) зависимость представлена и на диаграмме разброса r).
Коэффициент корреляции всегда принимает значения в интервале -1 ≤ r ≤ 1, т.е. при r >0 - положительная корреляция, при r=0 - нет корреляции, при r<0 - отрицательная корреляция.
Для тех же n пар данных (x1, y1), (x2, y2), ..., (xn, yn) можно установить зависимость между x и у. Формула, выражающая эту зависимость, называется уравнением регрессии (или линией регрессии), и ее представляют в общем виде функцией

Для определения линии регрессии (рис.4.19) необходимо статистически оценить коэффициент регрессии Ь и постоянную а. Для этого должны быть выполнены следующие условия:
1) линия регрессии должна проходить через точки (x,y) средних значений x и у.
2) сумма квадратов отклонений от линии регрессии значений у по всем точкам должна быть наименьшей.
3) для расчета коэффициентов а и b используются формулы

Т.е. уравнением регрессии можно аппроксимировать реальные данные.

7. Контрольная карта.
Одним из способов достижения удовлетворительного качества и поддержания его на этом уровне является применение контрольных карт. Для управления качеством технологического процесса необходимо иметь возможность контролировать те моменты, когда выпускаемая продукция отклоняется от заданных техническими условиями допусков. Рассмотрим простой пример. Проследим за работой токарного станка в течение определённого времени и будем измерять диаметр детали, изготавливаемой на нем (за смену, час). По полученным результатам построим график и получим простейшую контрольную карту (рис. 4.20):

В точке 6 произошла разладка технологического процесса, необходимо его регулирование. Положение ВКГ и НКГ определяется аналитически либо по специальным таблицам и зависит от объёма выборки. При достаточно большом объеме выборки пределы ВКГ и НКГ определяют по формулам

ВКГ и НКГ служат для предупреждения разладки процесса, когда изделия еще соответствуют техническим требованиям.
Контрольные карты применяются, когда требуется установить характер неисправностей и дать оценку стабильности процесса; когда необходимо установить, нуждается ли процесс в регулировании или его необходимо оставить таким, каков он есть.
Контрольной картой можно также подтвердить улучшение процесса.
Контрольная карта является средством распознания отклонений из-за неслучайных или особых причин от вероятных изменений, присущих процессу. Вероятные изменения редко повторяются в прогнозируемых пределах. Отклонения из-за неслучайных или особых причин сигнализируют о том, что некоторые факторы, влияющие на процесс, необходимо идентифицировать, расследовать и поставить под контроль.
Контрольные карты основываются на математической статистике. Они используют рабочие данные для установления пределов, в рамках которых будут ожидаться предстоящие исследования, если процесс останется неэффективным из-за неслучайных или особых причин.
Информация о контрольных картах содержится и в международных стандартах ИСО 7870, ИСО 8258.
Наибольшее распространение получили контрольные карты среднего значения X и контрольные карты размаха R, которые используются совместно или раздельно. Контролироваться должны естественные колебания между пределами контроля. Нужно убедиться, что выбран правильный тип контрольной карты для определенного типа данных. Данные должны быть взяты точно в той последовательности, в какой собраны, иначе они теряют смысл. Не следует вносить изменения в процесс в период сбора данных. Данные должны отражать, как процесс идет естественным образом.
Контрольная карта может указать на наличие потенциальных проблем до того, как начнется выпуск дефектной продукции.
Принято говорить, что процесс вышел из-под контроля, если одна или более точек вышли за пределы контроля.
Существуют два основных типа контрольных карт: для качественных (годен - негоден) и для количественных признаков. Для качественных признаков возможны четыре вида контрольных карт: число дефектов на единицу продукции; число дефектов в выборке; доля дефектных изделий в выборке; число дефектных изделий в выборке. При этом в первом и третьем случаях объем выборки будет переменным, а во втором и четвертом - постоянным.
Таким образом, целями применения контрольных карт могут быть: выявление неуправляемого процесса; контроль за управляемым процессом; оценивание возможностей процесса.
Обычно подлежит изучению следующая переменная величина (параметр процесса) или характеристика: известная важная или важнейшая; предположительная ненадежная; по которой нужно получить информацию о возможностях процесса; эксплуатационная, имеющая значение при маркетинге.
При этом не следует контролировать все величины одновременно. Контрольные карты стоят денег, поэтому нужно использовать их разумно: тщательно выбирать характеристики; прекращать работу с картами при достижении цели: продолжать вести карты только тогда, когда процессы и технические требования сдерживают друг друга.
Необходимо иметь в виду, что процесс может быть в состоянии статистического регулирования и давать 100% брака. И наоборот, может быть неуправляемым и давать продукцию, на 100% отвечающую техническим требованиям.
Контрольные карты позволяют проводить анализ возможностей процесса. Возможности процесса - это способность функционировать должным образом. Как правило, под возможностями процесса понимают способность удовлетворять техническим требованиям
Существуют следующие виды контрольных карт:
1. Контрольные карты для регулирования по количественным признакам (измеренные величины выражаются количественными значениями):
а) контрольная карта x - R состоит из контрольной карты x, отражающей контроль за изменением среднего арифметического, и контрольной карты R, служащей для контроля изменений рассеивания значений показателей качества. Применяется при измерении таких показателей, как длина, масса, диаметр, время, предел прочности при растяжении, шероховатость, прибыль и т.д.;
б) Контрольная карта x - R состоит из контрольной карты X, осуществляющей контроль за изменением значения медианы, и контрольной карты R. Применяется в тех же случаях, что и предыдущая карта. Однако она более проста, поэтому более пригодна для заполнения на рабочем месте.
2. Контрольные карты для регулирования по качественным признакам:
а) контрольная карта p (для доли дефектных изделий) или процента брака, применяется для контроля и регулирования технологического процесса после проверки небольшой партии изделий и разделения их на доброкачественные и дефектные, т.е. определения их по качественным признакам. Доля дефектных изделий получена путём деления числа обнаруженных дефектных изделий на число проверенных изделий. Может применяться также для определения интенсивности выпуска продукции, процента неявки на работу и т.д.;
б) контрольная карта pn (количество брака), применяется в случаях, когда контролируемым параметром является число дефектных изделий при постоянном объеме выборки n. Практически совпадает с картой p;
в) контрольная карта c (число дефектов на одно изделие), используется, когда контролируется число дефектов, обнаруживаемых среди постоянных объемов продукции (автомобили - одна или 5 транспортных единиц, листовая сталь - один или 10 листов);
г) контрольная карта n (число дефектов на единицу площади), используется, когда площадь, длина, масса, объём, сорт непостоянны и обращаться с выборкой как с постоянным объемом невозможно.
При обнаружении дефектных изделий целесообразно прикреплять к ним разные ярлыки: для дефектных изделий, обнаруженных оператором (тип A), и для дефектных изделий, обнаруженных контролером (тип B). Например, в случае A - красные буквы по белому полю, в случае B - чёрные буквы по белому полю.
На ярлыке указывают номер детали, наименование изделия, технологический процесс, место работы, год, месяц и число, сущность дефекта, число отказов, причину возникновения дефектности, принятые меры воздействия.
В зависимости от целей и задач анализа качества продукции, а также возможностей получения необходимых для его осуществления данных аналитические методы его проведения существенно различаются. Влияет на это и этап жизненного цикла продукции, охватываемый деятельностью предприятия.
На этапах проектирования, технологического планирования, подготовки и освоения производства целесообразно применение функционально-стоимостного анализа (ФСА): это метод системного исследования функций отдельного изделия или технологического, производственного, хозяйственного процесса, структуры, ориентированный на повышение эффективности использования ресурсов путем оптимизации соотношения между потребительскими свойствами объекта и затратами на его разработку, производство и эксплуатацию.
Основными принципами применения ФСА являются: функциональный подход к объекту исследования; системный подход к анализу объекта и выполняемых им функций; исследование функций объекта и их материальных носителей на всех стадиях жизненного цикла изделия; соответствие качества и полезности функций продукции затратам на них; коллективное творчество.
Выполняемые изделием и его составляющими функции можно сгруппировать по ряду признаков. По области проявления функции подразделяются на внешние и внутренние. Внешние - это функции, выполняемые объектом при его взаимодействии с внешней средой. Внутренние - функции, которые выполняют какие-либо элементы объекта, и их связи в границах объекта.
По роли в удовлетворении потребностей среди внешних функций различают главные и второстепенные. Главная функция отражает главную цель создания объекта, а второстепенная - побочную.
По роли в рабочем процессе внутренние функции можно подразделить на основные и вспомогательные. Основная функция подчинена главной и обусловливает работоспособность объекта. С помощью вспомогательных реализуются главные, второстепенные и основные функции.
По характеру проявления все перечисленные функции делятся на номинальные, потенциальные и действительные. Номинальные задаются при формировании, создании объекта и обязательны для выполнения. Потенциальные отражают возможность выполнения объектом каких-либо функций при изменении условий его эксплуатации. Действительные - это фактически выполняемые объектом функции.
Все функции объекта могут быть полезными и бесполезными, а последние нейтральными и вредными.
Цель функционально-стоимостного анализа заключается в развитии полезных функций объекта при оптимальном соотношении между их значимостью для потребителя и затратами на их осуществление, т.е. в выборе наиболее благоприятного для потребителя и производителя, если речь идет о производстве продукции, варианта решения задачи о качестве продукции и ее стоимости. Математически цель ФСА можно записать следующим образом:

где ПС - потребительная стоимость анализируемого объекта, выраженная совокупностью его потребительных свойств (ПС=Σnci);
3 - издержки на достижение необходимых потребительных свойств.

Вопросы по теме

1. Что вы понимаете под планированием качества?
2. Каковы задачи и предмет планирования качества?
3. Какова специфика планирования качества?
4. Каковы направления планирования повышения качества продукции на предприятии?
5. В чем заключается новая стратегия в управлении качеством и как она влияет на плановую деятельность предприятия?
6. Какова особенность плановой работы в подразделениях предприятия?
7. Какие межнациональные и национальные органы управления качеством вы знаете?
8. Каков состав служб управления качеством на предприятии?
9. Что означают термины «мотив» и «мотивация персонала»?
10. Какие параметры, определяющие действия исполнителя, может контролировать менеджер?
11. Какие способы вознаграждения вы знаете?
12. Каково содержание теорий X,Y, Z?
13. В чем суть мотивационнй модели А. Маслоу?
14. Какие виды вознаграждений применяют в менеджменте?
15. Каковы особенности мотивации деятельности людей в России?
16. Какие виды премий по качеству вы знаете?
17. В чем сущность процессов контроля качества?
18. Перечислите стадии процесса контроля.
19. По каким признакам различают виды контроля?
20. Что такое испытание? Какие виды испытаний вы знаете?
21. Каковы критерии решения о контроле?
22. Что такое система контроля качества продукции?
23. Какова структура ОТК и какие задачи на него возлагают?
24. Определите основные элементы системы профилактики брака на предприятии.
25. Что такое технический контроль и каковы его задачи?
26. Какие виды технического контроля вы знаете?
27. В чем цель и какова область применения статистических методов контроля качества?
28. Какие статистические методы контроля качества вы знаете и в чем их смысл?
29. Что такое ФСА и в чем его содержание?

Статистические методы контроля качества используются для оценки количественных характеристик качества. Первым статистические методы контроля производственных процессов начал использовать в 1920-е годы В.А. Шухарт (1891-1967). Примененная им карта регулирования контроля качества основывается на статистических данных. С помощью статистического анализа дефекты текущего производства могли быть своевременно обнаружены и устранены.

Статистические методы контроля качества показывают, что в определенной серии товаров определенные характеристики качества встречаются определенное количество раз, и на основе этих данных возможно выстроить кривую нормального распределения. При контролируемом процессе оценка каждой следующей партии будет давать аналогичную кривую, если процесс вышел из под контроля - кривые будут отличаться. Пример: рассчитано, что при нормальном распределении для высоты шага пресса (см. схему 1) основная масса характеристик находится рядом с величиной 150 мм. 68,27% результатов измерений находятся в интервале от 147мм до 153 мм.

Схема 1. Нормальное распределение высоты шага пресса.

При рассмотрении имеющихся показателей возможны два варианта:

1) Качество в порядке, все показатели находятся в пределах допустимых интервалов.

2) Качество не в порядке, показатели, выпадающие за пределы допустимых интервалов, должны быть приведены в норму. Опять же появляются три возможности:

  • отклонения все же позволяют ограниченное использование товара, к примеру, товар второго сорта.
  • дефекты могут быть устранены.
  • отклонения столь велики, что партия списывается как бракованная.

Карты регулирования как метод контроля качества

Карты регулирования качества - один из статистических методов контроля качества, средство наблюдения и контроля процессов, в частности производственных процессов. В процессе производства работники сами могут контролировать качество производства, произвольно выбирая изделия на линии и записывая результаты проверки в карту регулирования качества. Данные, внесенные в карту, дают возможность определить, находятся ли отклонения в пределах допустимого, которые определены заранее. В статистическом смысле карты регулирования качества - графическая интерпретация случайных событий в системе координат. До тех пор, пока отклонения не выходят за грани дозволенного, процесс считается управляемым (см. схему 2). Образ действий при ведении карты регулирования качества:

  • Регулярно осуществлять выборочный контроль;
  • При этом временные промежутки между выборками должны быть установлены в момент заведения карточки регулирования качества;
  • Объем выборочных проб должен быть постоянным;
  • Любое вмешательство в производственный процесс должно быть отмечено в карте регулирования качества.

Схема 2. Построение карты регулирования качества.

Для расчета пригодности процесса используется формула:

Процесс считается пригодным, т.е. имеющим достаточный потенциал качества, если Сp ³ 1,33, а дисперсия лежит внутри области допуска (OTG -UTG).

Если изготовление протекает не в рамках нормального распределения, т.е. в области допуска имеет односторонний разброс значений, то нормальное распределение к нему не подходит. Это означает, что процесс статистически не контролируем, не надежен. Статистическая контролируемость означает, что случайные влияния служат единственной причиной отклонений от заданной характеристики качества. Причинами процесса «вне статистического контроля» могут являться незамеченные изменения в сырье, поломка инструментов или ошибки необученного работника, в целом не из-за случайной дисперсии, а по причине систематических воздействий. Надежность процесса определяется отношением интервала между средним значением распределения и близлежащей границей допуска к трем дисперсиям:

Процесс считается достаточно надежным, если Срk ≥ 1,33.где Z - интервал между средним значением распределения и близлежащей гра-ницей допуска, s -стандартное отклонение.

Схема 3. Производственный пример карты регулирования процесса «точения вала диаметром 25,10 мм, допуском ± 0,04 мм.

Поскольку потенциал качества процесса Сp ³ 1,33, то процесс является пригодным. При этом надежность процесса составляет Срk ≥ 1,33, что также характеризует высокую надежность процесса. Вывод: продолжать процесс.

Схема 4. Производственный пример карты регулирования процесса «точения вала диаметром 25,10 мм, допуском ± 0,04 мм.

Потенциал процесса - хороший (СР ≥ 1,33), надежность процесса - низкая (Срk ≤ 1,33). Процесс подвержен систематическому воздействию неслучайных факторов, из-за чего график распределения значений смещается то к нижней, то к верхней границе допуска. Необходимо определить причины, произвести регулирование процесса, сделать последующую статистическую оценку.

Схема 5. Производственный пример карты регулирования процесса «точения вала диаметром 25,10 мм, допуском ± 0,04 мм.

Потенциал процесса - Плохой (Сpk ≤ 1,33), надежность процесса - низкая (Срk ≤ 1,33). Необходимо проанализировать процесс, разработать мероприятия, организовать процесс по-новому.

Больше материалов на эту тему вы можете найти в разделе Управление качеством библиотеки портала, а также в

Похожие статьи